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Abstract—The onset of double-diffusive convection in a couple-
stress fluid-saturated with horizontal porous layer is analysed by 
using linear and weak nonlinear stability analyses. It is obtained that 
the couple-stress parameter and the solute Rayleigh number have a 
stabilizing effect on stationary, oscillatory and finite-amplitude 
convection. The heat and mass transfer decreases with an increase in 
the values of couple-stress parameter and diffusivity ratio, while both 
increase with an increase in the value of the solute Rayleigh number. 

1. INTRODUCTION 

The study of convective flow of thermo-solutal couple-stress 
fluid in darcy porous medium with heat and mass transfer 
under the influence of chemical reaction with heat source has 
practical applications in many areas of science and 
engineering. Natural convection flows occur frequently in 
nature due to temperature differences, concentration 
differences, and also due to combined effects. The 
concentration difference may sometimes produce qualitative 
changes to the rate of heat transfer. Recently, the equally 
problem of hydromagnetic convective flow of a conducting 
fluid through a porous medium has been investigated. 

Many important developments in literature of stability theory 
are given by, Chandrasekhar(1981), Nield and Bejan (2012). 
Bhadauria et al. (2012) has made the stability analysis of 
convection in a binary fluid-saturated horizontal porous layer 
with internal heat source. Recently, viscoelastic fluid flow in 
porous media has attracted considerable attention, due to the 
large demands of such diverse fields as biorheology, 
geophysics, chemical industries, and petroleum industries. 
Also Bhadauria group (2012),(2013) have studied the problem 
of thermal instability in porous media with internal heating, 
considering various physical models. Cimpean (2012), 
analyzes the mixed convection flow of a nanofluid in an 
inclined channel filled with a porus medium. The main focus 
was on the effects of the main parameters, such as solid 
volume fraction of the nanoparticles, the mixed convection 
parameter, the Péclet number and the inclination of the 
channel to the horizontal, on the thermal performances of the 
flow. Gaikwad and Kamble (2012) have investigated the Soret 
effect on double diffusive convection in a horizontal sparsely 

packed porous layer. Narayana et al. (2012) studied the linear 
and weakly nonlinear stability analysis of double-diffusive 
convection in a porous medium saturated by a Maxwell fluid 
in the presence of cross diffusion effects. The effects of the 
Soret and Dufour parameters on the onset of double diffusive 
convection in a Maxwell fluid are investigated under the 
assumption of a single phase model with local thermal 
equilibrium (LTE) between the porous matrix and the 
Maxwell fluid. Harfash (2013) studied double-diffusive 
convection in a reacting fluid with a concentration and 
magnetic field effect–based internal heat source by using 
linear instability analysis and nonlinear stability analysis and 
using the finite element method of p order. Further Nygard et 
al. (2013) done a computational study on turbulent flow 
through an abrupt axisymmetric contraction. Rana (2014) 
studied the thermal convection in couple-stress fluid in 
hydromagnetics saturating a porous medium and found that 
couple-stress parameter has stabilizing effect on the system. 
The onset of convection in a horizontal layer heated from 
below (Bénard problem) for a nanofluid was studied by Rana 
et al. (2014). Kumar et al.(2015) investigated the 
thermosolutal convection in a viscoelastic dusty fluid with hall 
currents in porous medium. Kumar et al.(2016) studied the 
effects of horizontal magnetic field and rotation on thermal 
instability of a couple-stress fluid through a porous medium. 
Singh et al.(2016) analysed the the transport of vorticity in 
magnetic Maxwellian viscoelastic fluid -particle mixtures in 
porous medium. Chand et al.(2017), investigated the thermal 
instability in a layer of couple stress nanofluid saturated 
porous medium and also studied the thermal instability in a 
horizontal layer of Couple-stress nanofluid in a porous 
medium for more realistic boundary conditions. Kumar et 
al.(2017) studied the effect of horizontal magnetic field and 
horizontal rotation on thermo-solutal stability of a dusty 
couple-stress fluid through a porous medium: a brinkman 
model. Rana et al.(2018) studied the stability analysis of 
double-diffusive convection in a couple stress nanofluid. 
Singh M.(2018), investigated the double-diffusive convection 
of synovial (couple-stress) fluid in the presence of hall current 
through a porous medium and studied the effect of Hall 
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current on thermosolutal convection of a couple-stress fluid 
through porous medium. Current paper is a review work based 
on Malashetty et al.(2010) analysed Double-diffusive 
convection in a Darcy porous medium saturated with a couple-
stress fluid. 

2. MATHEMATICAL FORMULATION AND 
STABILITY ANALYSIS 

Let’s consider a horizontal porous layer which is saturated 
with a couple-stress fluid between two parallel infinite stress-
free boundaries, z	 	0, d, heated from below. The 
temperature and concentration differences between the planes 
are respectively ∆T	and ∆S. The z-axis is taken vertically 
upward in the gravitational field in a Cartesian frame of 
reference. Let’s assume that Oberbeck–Boussinesq 
approximation is true and the flow in the porous medium is 
carried out by the modified Darcy’s law. The study of double-
diffusive convection in a couple-stress fluid-saturated 
horizontal porous layer with the basic equations are given by: 

. q 0,      (1) 

q. q p ρg μ μ q, (2) 

γ q. T κ T Q T T ,  (3) 

ε q. S κ S,    (4) 

ρ 	 ρ 1 β T T β S S ,  (5) 

where q	 	 u, v, w  is the velocity; p is the pressure; ρ is the 
density; T is the temperature; S is the solute concentration; 
Q	is heat source parameter; T , S  and ρ  are the reference 
temperature, concentration and density, respectively; the 
acceleration due to gravity is given by g; k is the permeability 
of the porous medium;	ε	is the porosity; μ is the fluid 
viscosity; μ  is the couple-stress viscosity; β  and β 	are the 
thermal expansion coefficient and the solute expansion 
coefficient, respectively; 

and k  and k  are the effective thermal diffusivity and the 
solute diffusivity, respectively. Moreover, 

γ , κ , ρc 1 ε ρc

ε	 ρc . 

Here, c  is the specific heat of the fluid at constant pressure; c 
is the specific heat of the solid; K is taken as the thermal 
conductivity; and the subscripts f, s and m denote fluid, solid 
and porous medium values, respectively.The basic state of the 
fluid is considered to be quiescent and is given by: q
0,0,0 , p p z , T T z , S S z , ρ ρ z  

 (6) 

The solute concentration S z , temperature T z , pressure 
p z  and density ρ z  satisfy the equations as follows: 

ρ g,       (7) 

0,      (8) 

0,       (9) 

ρ ρ 1 β T T β S S     (10) 

On the basic state, we consider perturbations in the following 
form: 

q q q x, y, z, t , T 	T z 	 T x, y, z, t 	, S
	S z S x, y, z, t , p p z p x, y, z, t , ρ ρ z
ρ x, y, z, t ,    (11) 

where primes indicate perturbations. Introducing (11) in 
equation (1)–(5) and using basic state equations, we obtain 

. q 0,       (12) 

q . q 	 p ρ g 1 q  (13) 

γ q . T w κ T QT     (14) 

ε q . S w κ S ,   (15) 

ρ ρ β T β S     (16) 

We consider only two-dimensional disturbances and define ψ 
as stream function which is given by 

u ,w ,     (17) 

which also satisfy the continuity equation (12). Now let’s 
eliminate the pressure term from Eq.(13) by introducing the 
stream function	ψ, and non-dimensionalising the resulting 
equation as well as equation(14) and (15), considering the 
following non-dimensional parameters, 

x∗, z∗ , , t∗ t , ψ∗ , T∗
∆
, S∗

∆
,  

      (18) 

We obtain 

1 C ψ

Ra Ra ,    (19) 

T QT 0, (20) 

τ S 0.  (21) 

Here V , C , τ , 	Ra ∆ , Ra
∆

. 

The dimensionless groups which appear are Vadasz number 
V , thermal Rayleigh number 	Ra , solute Rayleigh number 
	Ra , couple-stress parameter C and diffusivity ratio τ .The 
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asterisks have been dropped for simplicity. Further, to restrict 
the number of parameters, let’s set ε and γ	equal to unity. 
Equations (19)–(21) get solved for stress-free, isothermal, 
vanishing couple-stress boundary conditions, namely 

ψ T S Q 0, at z 0, 1.  (22) 

3. METHOD OF SOLUTION 

We discuss in this section the linear stability analysis, which is 
very useful in the local non-linear stability analysis discussed 
in the proceeding section. For this study, the Jacobians in 
Equation (19)–(21) are neglected and suppose that the 
solutions to be periodic waves of the form 

	
	 	

θ 	 	
	 	

1,2,3,…   

      (23) 

where  is the growth rate and . 	is the 
horizontal wavenumber. Substituting equation (23) in 
equations (19)–( 21), we get 

σ
η δ 	 Ra θ 	 Ra 	    (24) 

δ θ 	 	      (25) 

δ 	 	,     (26) 

where	δ 	 	 1 , 	1 	δ . 

The parameter  is the couplestress viscosity of the fluid. In 
the case of Newtonian fluid, we have 1. Now, equations 
(24)–(26) can be written in matrix form as 

0,      (27) 

where 

σ
η δ Ra Ra

δ 0
0 δ

, 
	

θ 	

	

 and 

0
0
0
0
. 

For non-trivial solution for , the determinant of the matrix  
to be vanished, which gives 

δ δ 	 δ δ

δ
 .  (28)

 Normally, we assume that for 	 	1 which is the 
most unstable mode (fundamental mode). Accordingly, we set 

	1 δ , δ 	 1 ,	in our further study.For the 
steady case, we have σ = 0 at the marginal stability. Then, the 
Rayleigh number becomes 

	
δ 	

	       (29)   The 

minimum value of the Rayleigh number 	 appears at the 
critical wavenumber ,	and  satisfies the following 
equation 

2 	 1 	 1 0 (30) Here the 
critical wavenumber  depends on the couple-stress 
parameter . In the case of the single-component 
system,	 	 	0, equation (29) becomes 

	
δ δ

 ,    (31)

 In the presence of couple stresses, equation (31) gives 
rise to the critical value of the Rayleigh number 

, 	
    (32) The 

critical wavenumber 	can be obtained from equation (30). In 
the absence of couple stresses, i.e. when 	 	0, equation (32) 
gives 

	      (33) 

with critical values when 1	and 	 4  for 
Newtonian fluid through a Darcy porous layer heated and 
salted from below. 

Now σ = iω (ω is real) in Equation (28) and also rearranging 
the terms we get the oscillatory Rayleigh number  at the 
margin of the stability, in the form 

	

 (34) 

with the non-dimensional frequency	  and 

   (35) 

 A careful observation at the expression for frequency 
 reveals that oscillatory convection is possible only if 1. 

Let’s carry out the Finite-amplitude analysis in this section by 
Fourier series representation for stream function , 
temperature  and concentration  in the form 

∑ ∑ 	∞ sin∞ ,  (36) 

∑ ∑ 	∞ sin∞ ,  (37) 

∑ ∑ 	∞ sin∞ . (38) 

Substituting equations(36)–(38) in(19)–(21), we get a system 
of coupled, nonlinear ordinary differential equations. 

The first effect of nonlinearity is to distort the temperature and 
concentration fields by the interaction of , 	and . The 
distortion of these fields gives rise to a change in the 
horizontal mean, i.e. a component of the form 	 2  will 
be formed. Therefore, a minimal Fourier series that explains 
the finite-amplitude double-diffusive convection is given by 
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	 ,   (39) 

	 	 2 , (40) 

	 	 2 , (41) 

Putting equations (39)–(41) into equations (19)–(21) and 
equating the coefficients of like terms, the following nonlinear 
autonomous system of differential equations can be obtained: 

,  (42) 

,   (43) 

4 ,   (44) 

,   (45) 

4 ,    (46) 

where the overdot represents the derivative with respect to 
time. 

Like the original equations (12)–(16), equations (42)–(46) 
must be dissipative. Therefore, volume in the phase space 
must contract. To prove volume contraction, we must prove 
that the velocity field has a constant negative divergence. 
Indeed, 

1

4 1 .     (47) 

From equation(47) we conclude that if a set of initial points in 
phase space occupies a region 0  at time 	 	0, then after 
some time , the end points of the corresponding trajectories 
will occupies a volume	

0 1 4 1  

We note that the system of equations (4.7)–(4.11) is invariant 
under symmetry transformation , , , , →

, , , , . 

Setting the left-hand sides of equations (42)–(46) equal to 
zero, we obtain 

	 	 0,  (48) 

0,  (49)	

8 0,   (50) 

0,  (51) 

8 0.   (52) 

Eliminating all coefficients except  between equations (48)–
(52), we obtain 

0,   (53) 

where , 	 , 	 1

, 	 . 

The finite-amplitude Rayleigh number can be written in the 
form 

4 , (54)   where 

, , 

1

2 1 4
 

Let’s consider  and  are the rates of heat and mass transport 
per unit area, respectively as follows: 

〈 	 〉    (55) 

〈 	 〉    (56) 

where a horizontal average is denoted by the angular bracket 
and 

	 ∆ , , ,  (57) 

	 ∆ , , ,  (58)  

Substituting equations (40) and (41) into equations (57) and 
(58), respectively, and using the resultant equations in (55) 
and (56), we have 

∆ 1 2    (59) 

∆ 1 2    (60) 

The Nusselt and Sherwood numbers are represented by 

∆ ⁄
1 2    (61) 

∆ ⁄
1 2    (62) 

Writing  and  in terms of , using equations (48)–(52), 
and replacing in equations (61) and (62), respectively, we get 

1     (63) 

1   (64) 

The second term on the right-hand side of equations (63) and 
(64) explains the convective contribution to heat and mass 
transport, respectively. 

4. RESULT AND DISCUSSION 

The linear theory is explained by considering the usual normal 
mode technique and the nonlinear theory is by the truncated 
Fourier series method. Mathematical expressions for the 
oscillatory, stationary and finite-amplitude Rayleigh numbers 
for different values of parameters such as diffusivity ratio, 
couple-stress parameter and solute Rayleigh number are 
calculated and the results are plotted in figures. Figure 1 



Li
 

di
co
1.
ne
fo
va
an
di
va

Fi
fo
nu

inear Stability

isplays the ne
ouple-stress p
.0,	and 
eutral curves f
or fixed values
ariation of the
nd oscillatory
ifferent value
alues of 	

igure 4 indicat
or stationary 
umber for diff

Figure 1. Neu

  

Figure 2. Neu

y Analysis of T

p-ISS

eutral stability
arameter and 
150.0. The

for the oscilla
s of 	 	1
e critical Ray

y modes with 
s of the coup
	1.0 and 

tes the variati
and oscillato

ferent values o

utral stability 
couple stre

utral stability c
Vadasz

Thermo-Solut

Jou
SN: 2350-0077

y curves for v
for fixed valu

e effect of 
atory mode is 
150.0, 	0.
yleigh number

the solute R
ple-stress par
	0.5 is depict

on of the criti
ory modes w
of diffusivity r

curves for diff
ess parameter 

curves for  diff
z number . 

 

tal Couple-Str

urnal of Basic 
7; e-ISSN: 23

various values
ues of 0.5
Vadasz num
displayed in f
5 and 	 	1
r for both sta

Rayleigh num
rameter  an
ted in figure 3

ical Rayleigh n
with solute R
ratio.  

ferent values o
.  

ferent values o

ress Fluid Flow

 

and Applied E
50-0255; Vol

s of the 
5,

mber on 
figure 2 
1.0. The 
ationary 

mber for 
d fixed 

3.  

number 
Rayleigh 

 

f the 

 

of the 

F

F

5.

Th
flu
usi
mo
ter
eq
am
go
sol
on
dis

 

 

w with Linear

Engineering R
lume 6, Issue 2

 

Figure 3. Varia
the solute Ra

Figure 4. Varia
the solute Ra

CONCLUS

he onset of d
uid-saturated w
ing linear a
odified Darcy
rm and the in

quation. The ex
mplitude Rayl
overning param
lute Rayleigh

n stationary, o
splayed graph

r Heating in P

Research 
2; January-Ma

ation of the crit
ayleigh numbe

ation of the crit
ayleigh numbe

SION & FUT

double-diffusiv
with a horizon

and weak no
y equation wh
nertia term is
xpressions for
leigh number 
meters. The e

h number, Vad
oscillatory an

hically. The fo

orous Medium

arch, 2019 

tical Rayleigh 
er 	for diffe

tical Rayleigh 
er 	for diffe

TURE SCOPE

ve convection
ntal porous la

onlinear stabi
hich includes 
s used to mo
r stationary, o

are found a
effect of coup
dasz number 
nd finite-ampl
llowing concl

m 

number ,

erent values of

number ,
erent values of

E 

n in a couple
ayer is discus
ility analyses
the time der

odel the mom
scillatory and
s a function 

ple-stress para
and diffusivit
litude convec
lusions are dra

135 

  

 with 
f . 

 

 with 
f τ . 

e-stress 
ssed by 
s. The 
rivative 
mentum 
d finite-

of the 
ameter, 
ty ratio 
ction is 
awn: 



Ashok Kumar Sahoo and Dr. Saurabh Kapoor 
 

 

Journal of Basic and Applied Engineering Research 
p-ISSN: 2350-0077; e-ISSN: 2350-0255; Volume 6, Issue 2; January-March, 2019 

136

1. The solute Rayleigh number and the couple-stress 
parameter have a stabilizing effect on the oscillatory, 
stationary, and finite-amplitude convection. 

2. The Vadasz number advances the onset of oscillatory 
convection, showing that it has a destabilizing effect. 

3. The diffusivity ratio has a destabilizing effect in the case 
of stationary and finite amplitude modes, but it has a dual 
effect in the case of the oscillatory mode depending upon 
the parameter values. 

4. The heat and mass transfer decreases with an increase in 
the values of couple-stress parameter 	and diffusivity 
ratio , but both increase with an increase in the value of 
the solute Rayleigh number . 
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