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Abstract—The onset of double-diffusive convection in a couple-
stress fluid-saturated with horizontal porous layer is analysed by
using linear and weak nonlinear stability analyses. It is obtained that
the couple-stress parameter and the solute Rayleigh number have a
stabilizing effect on stationary, oscillatory and finite-amplitude
convection. The heat and mass transfer decreases with an increase in
the values of couple-stress parameter and diffusivity ratio, while both
increase with an increase in the value of the solute Rayleigh number.

1. INTRODUCTION

The study of convective flow of thermo-solutal couple-stress
fluid in darcy porous medium with heat and mass transfer
under the influence of chemical reaction with heat source has
practical applications in many areas of science and
engineering. Natural convection flows occur frequently in
nature due to temperature differences, concentration
differences, and also due to combined effects. The
concentration difference may sometimes produce qualitative
changes to the rate of heat transfer. Recently, the equally
problem of hydromagnetic convective flow of a conducting
fluid through a porous medium has been investigated.

Many important developments in literature of stability theory
are given by, Chandrasekhar(1981), Nield and Bejan (2012).
Bhadauria et al. (2012) has made the stability analysis of
convection in a binary fluid-saturated horizontal porous layer
with internal heat source. Recently, viscoelastic fluid flow in
porous media has attracted considerable attention, due to the
large demands of such diverse fields as biorheology,
geophysics, chemical industries, and petroleum industries.
Also Bhadauria group (2012),(2013) have studied the problem
of thermal instability in porous media with internal heating,
considering various physical models. Cimpean (2012),
analyzes the mixed convection flow of a nanofluid in an
inclined channel filled with a porus medium. The main focus
was on the effects of the main parameters, such as solid
volume fraction of the nanoparticles, the mixed convection
parameter, the Péclet number and the inclination of the
channel to the horizontal, on the thermal performances of the
flow. Gaikwad and Kamble (2012) have investigated the Soret
effect on double diffusive convection in a horizontal sparsely

packed porous layer. Narayana et al. (2012) studied the linear
and weakly nonlinear stability analysis of double-diffusive
convection in a porous medium saturated by a Maxwell fluid
in the presence of cross diffusion effects. The effects of the
Soret and Dufour parameters on the onset of double diffusive
convection in a Maxwell fluid are investigated under the
assumption of a single phase model with local thermal
equilibrium (LTE) between the porous matrix and the
Maxwell fluid. Harfash (2013) studied double-diffusive
convection in a reacting fluid with a concentration and
magnetic field effect-based internal heat source by using
linear instability analysis and nonlinear stability analysis and
using the finite element method of p order. Further Nygard et
al. (2013) done a computational study on turbulent flow
through an abrupt axisymmetric contraction. Rana (2014)
studied the thermal convection in couple-stress fluid in
hydromagnetics saturating a porous medium and found that
couple-stress parameter has stabilizing effect on the system.
The onset of convection in a horizontal layer heated from
below (Bénard problem) for a nanofluid was studied by Rana
et al. (2014). Kumar et al.(2015) investigated the
thermosolutal convection in a viscoelastic dusty fluid with hall
currents in porous medium. Kumar et al.(2016) studied the
effects of horizontal magnetic field and rotation on thermal
instability of a couple-stress fluid through a porous medium.
Singh et al.(2016) analysed the the transport of vorticity in
magnetic Maxwellian viscoelastic fluid -particle mixtures in
porous medium. Chand et al.(2017), investigated the thermal
instability in a layer of couple stress nanofluid saturated
porous medium and also studied the thermal instability in a
horizontal layer of Couple-stress nanofluid in a porous
medium for more realistic boundary conditions. Kumar et
al.(2017) studied the effect of horizontal magnetic field and
horizontal rotation on thermo-solutal stability of a dusty
couple-stress fluid through a porous medium: a brinkman
model. Rana et al.(2018) studied the stability analysis of
double-diffusive convection in a couple stress nanofluid.
Singh M.(2018), investigated the double-diffusive convection
of synovial (couple-stress) fluid in the presence of hall current
through a porous medium and studied the effect of Hall
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current on thermosolutal convection of a couple-stress fluid
through porous medium. Current paper is a review work based
on Malashetty et al.(2010) analysed Double-diffusive
convection in a Darcy porous medium saturated with a couple-
stress fluid.

2. MATHEMATICAL
STABILITY ANALYSIS

FORMULATION AND

Let’s consider a horizontal porous layer which is saturated
with a couple-stress fluid between two parallel infinite stress-
free boundaries, z = 0,d, heated from below. The
temperature and concentration differences between the planes
are respectively AT and AS. The z-axis is taken vertically
upward in the gravitational field in a Cartesian frame of
reference. Let’s assume that Oberbeck—Boussinesq
approximation is true and the flow in the porous medium is
carried out by the modified Darcy’s law. The study of double-
diffusive convection in a couple-stress fluid-saturated
horizontal porous layer with the basic equations are given by:

V.q=0, (1)

d 1 1
(0w = W ps w0

Y2+ (@ V)T = (V2T + Q(T — Ty), 3)
2+ (q.V)S = ksV2S, )
p = po[l—PBr(T—To) + Bs(S — So)l, &)

where q = (u,v,w) is the velocity; p is the pressure; p is the
density; T is the temperature; S is the solute concentration;
Qs heat source parameter; Ty, S, and p, are the reference
temperature, concentration and density, respectively; the
acceleration due to gravity is given by g; k is the permeability
of the porous medium; e€is the porosity; p is the fluid
viscosity; . is the couple-stress viscosity; Bt and Bg are the
thermal expansion coefficient and the solute expansion
coefficient, respectively;

and kt and kg are the effective thermal diffusivity and the
solute diffusivity, respectively. Moreover,

_ (pOm _ (1-8)Ks+eKg _ _
- (pcp)vaT - (Pcp)f ) (pc)m - (1 E)(pc)s +
€ (pCp)f.

Here, c, is the specific heat of the fluid at constant pressure; ¢
is the specific heat of the solid; K is taken as the thermal
conductivity; and the subscripts f,s and m denote fluid, solid
and porous medium values, respectively.The basic state of the
fluid is considered to be quiescent and is given by: qp =
(0!0!0)1 p(6:) pb(Z)IT = Tb(Z)' S= Sb(Z)! p= pb(Z)

The solute concentration S,(z), temperature T, (z), pressure
Py, (z) and density py, (z) satisfy the equations as follows:

dop _ _

o — Pu8 )
dTy, _

dz2 0, ®)
d?sp _

oo, ©

Pb = Pol1 — Br(Ty — To) + Bs(Sp — So)]

On the basic state, we consider perturbations in the following
form:

a=qp+q9'xy,z0),T= Tz +T'(xyz1),S=

Sp(z) +5'(x,y,2,0,p =pp(@) + p'(x,y,2,0),p = pp(2) +
p'(%y,21), (11)

where primes indicate perturbations. Introducing (11) in
equation (1)—(5) and using basic state equations, we obtain

V.q =0, (12)

€

(10)

Yo+ (@ T +w' 22 = V2T + QT (14)
os’ Y 105y _ . o2er

sat+(q.V)S +w =2 =11VeS, (15)

p' = —po(BrT" — BsS") (16)

We consider only two-dimensional disturbances and define y
as stream function which is given by

ww) = (=5.5)

17)
which also satisfy the continuity equation (12). Now let’s
eliminate the pressure term from Eq.(13) by introducing the
stream function {, and non-dimensionalising the resulting
equation as well as equation(14) and (15), considering the
following non-dimensional parameters,

ooy (X2 e _ (YR e W e T S
(X’Z)_(d'd)’t _t(KT)'lIJ _KT'T _AT'S T AS
(18)
We obtain
10 1 cv2)vzy — L (W) _ awa(Viw)y _
(yVaBt+1 CV)VlIJ Va(ax 0z 0z  0x )_
T as
—RaTg‘i'RaS—X, (19)
OT L 00 _ (0W3T _0WoT\ w2 _ T’ =
at+ax (axaz azax) ViT-QT' =0, (20)
£9S L O _ (00 _ WIS\ _ oo _
y ot ax (6){ dz daz ax) WS =0. (21)
_evd? e ks _ BrgATdk _
Here Va_KTk’ C_udz' T_KT’ Rar = ver Ras =
BsgASdk
vks

The dimensionless groups which appear are Vadasz number
V,, thermal Rayleigh number Rar, solute Rayleigh number
Rag, couple-stress parameter C and diffusivity ratio T .The
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asterisks have been dropped for simplicity. Further, to restrict

the number of parameters, let’s set € and yequal to unity.

Equations (19)—(21) get solved for stress-free, isothermal,

vanishing couple-stress boundary conditions, namely
2

p=2Y-T=5=Q=0atz=0,1.

9z2

3. METHOD OF SOLUTION

(22)

We discuss in this section the linear stability analysis, which is
very useful in the local non-linear stability analysis discussed
in the proceeding section. For this study, the Jacobians in
Equation (19)-(21) are neglected and suppose that the
solutions to be periodic waves of the form

P Py sin nax
(T) = et (60 cos nnax) sin(nnz)(n = 1,2,3,...)

s ®, cos nax
(23)

where ¢ is the growth rate and o =g, +iog;. ais the
horizontal wavenumber. Substituting equation (23) in
equations (19)—( 21), we get

(Vi + n) 81211/}0 = nﬂa(—RaTeo + Ras¢0 ) (24)

(32 + 0)8, = —nmay, (25)

(v} + 0)Py = —nmayy, (26)

where 82 = n?m?(1+a?),n= 1+C3:.

The parameter 7 is the couplestress viscosity of the fluid. In
the case of Newtonian fluid, we have n = 1. Now, equations

(24)—(26) can be written in matrix form as
AX =0, 27

where

A= o+ 82

nna 0

()

For non-trivial solution for X, the determinant of the matrix A
to be vanished, which gives

G 2
(Z + n) 0, Rarnma —Ragnma Yo
na 0 , X=10y | and

o+ 15,

52 2)( 2 2 2.2 ,2( 5152
Ra, = (U+bn)(0+15n)(ﬁ+ n)6n+Ra5n n?a?(o+35)

n2n2a2(c+135) (28)
Normally, we assume that for n = 1 which is the
most unstable mode (fundamental mode). Accordingly, we set
n= 1488 = n2(a?+ 1), in our further study.For the
steady case, we have o = 0 at the marginal stability. Then, the
Rayleigh number becomes

4
Rast = nd Rag

(29) The
m2a? T
minimum value of the Rayleigh number Ra$' appears at the
critical wavenumber a = ., and «, satisfies the following

equation

2Cn?(a®)?+ (14 Cn?) a? — (1 + Cn?) = 0 (30) Here the
critical wavenumber @, depends on the couple-stress
parameter C. In the case of the single-component
system, Rag = 0, equation (29) becomes

1+¢32)5*
Ra%t =( )

e, (31)
In the presence of couple stresses, equation (31) gives
rise to the critical value of the Rayleigh number
n?(1+ac?)[1+cn?(1+ac?))
2

Raf, = — (32) The

c
critical wavenumber a, can be obtained from equation (30). In
the absence of couple stresses, i.e. when C = 0, equation (32)
gives

2(14q2)°
Rajt ==0e) (33)
with critical values when a,= land Ra$’ =4m? for

Newtonian fluid through a Darcy porous layer heated and
salted from below.

Now ¢ = iw (w is real) in Equation (28) and also rearranging
the terms we get the oscillatory Rayleigh number Ra%*¢ at the
margin of the stability, in the form

78 \4
(1+71) [n64(1+‘[) +V—a+n2Va62] +Ragm?a? (2+T+n—2a)

Ragsc = &2 (34
T n2a2(21+1+%) (34)
with the non-dimensional frequency w? and
5472 i+n +Ragm?a?(1-1)
0)2 - _ (Va ) S (35)

1+(%v,)
A careful observation at the expression for frequency
w reveals that oscillatory convection is possible only if T < 1.

Let’s carry out the Finite-amplitude analysis in this section by
Fourier series representation for stream function 1,
temperature T and concentration S in the form

Y = Xi=1 Xn=1 Amn(t) sin(mmax) sin(nnz), (36)
T = 3% 0251 Bpn(t) cos(mmax) sin(nnz), 37)
(38)

Substituting equations(36)—(38) in(19)—(21), we get a system
of coupled, nonlinear ordinary differential equations.

S = X% 1 Y1 Emn (t) cos(mmax) sin(nmz).

The first effect of nonlinearity is to distort the temperature and
concentration fields by the interaction of 1, T and S. The
distortion of these fields gives rise to a change in the
horizontal mean, i.e. a component of the form sin (2mz) will
be formed. Therefore, a minimal Fourier series that explains
the finite-amplitude double-diffusive convection is given by
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Y = A, (t) sin(max)sin(nz), 39)
T = B,(t) cos(max)sin(mz)+B,(t) sin(2nz), (40)
S = E{(t) cos(max)sin(nz)+E,(t) sin(2nz), 41

Putting equations (39)—(41) into equations (19)—(21) and
equating the coefficients of like terms, the following nonlinear
autonomous system of differential equations can be obtained:

A1 _ RaT(;tZaVaB n Rasmea — 52V, A, (42)
B, = —mad, — 8%B, — nzaAle, (43)
B, = —4n?B, + ““ A,B,, (44)
E, = —maA, — §%tE, — m*aA,E,, (45)
B, = —4n%tE, + O AE,, (46)

where the overdot represents the derivative with respect to
time.

Like the original equations (12)—(16), equations (42)—(46)
must be dissipative. Therefore, volume in the phase space
must contract. To prove volume contraction, we must prove
that the velocity field has a constant negative divergence.
Indeed,

94y | 9B, | 0B, BEl
o4, ' 0B, ' 0B,

472 (1 + 12)).

+ =—[2V, +1+1D) +

(47)
From equation(47) we conclude that if a set of initial points in
phase space occupies a region V(0) at time t = 0, then after

some time t, the end points of the corresponding trajectories
will occupies a volume

V(t) = V(0)exp[—{62(nV, + 1 + 1) + 4m%(1 + t2)}t]

We note that the system of equations (4.7)—(4.11) is invariant
under symmetry transformation (A4, By, By, E1, E,) —
(_Alv _B1; _BZJ _E1; _EZ)'

Setting the left-hand sides of equations (42)-(46) equal to
zero, we obtain

n6*A; + RarmaB, — RagmaE, = 0, (48)

ﬂaA1 + 62B1 + 71'20_’14132 = 0, (49)
832 - O(AlBl = 0, (50)
ﬂaAl + T62E1 + TTZO(AlEZ = 0, (51)

87E, — aA,E, = 0. (52)

Eliminating all coefficients except A; between equations (48)—
(52), we obtain

ax?+bx+c=0, (53)
2
where x—A— a, =né%a 4bl—n&a(l+1'2)+
66 2 2 R
('L'Ras —Rar), ¢; = nn4 + Tﬂz ( a5 4 RaT)

The finite-amplitude Rayleigh number can be written in the
form

1

RaT - { x; + (x2 — 4x1x3)(1/2)}, (54) where x; =
X1

ad _ 4n8%ab1?  216%a%(1+12)  2a®tRag
s T 2 - w2 T st

268 4 ZRa
X3 = (1+72+1Y + s

2né62abt(1 + TZ)RaS 4n6%ta®Ra
* 2 - w2

Let’s consider H and J are the rates of heat and mass transport
per unit area, respectively as follows:

0 Ttota
H = =iy ((liosaty (55)

= (56)

as
] = =g (Piotaty

where a horizontal average is denoted by the angular bracket
and

Teotar = To = AT 5+ T(x,2,0), (57)

Stotat = So = AS =+ S(x, 2, 1), (58)

Substituting equations (40) and (41) into equations (57) and
(58), respectively, and using the resultant equations in (55)
and (56), we have

H = L2 (1 - 2nB,) (59)
J =21 - 2mE,) (60)

The Nusselt and Sherwood numbers are represented by
u= KTA”T/d 1-2nB, (61)
= KSA’T o =1-2mE, (62)

Writing B, and E, in terms of A4, using equations (48)—(52),
and replacing in equations (61) and (62), respectively, we get

2m?a’x

Nu=1+ (63)

§2+m2aZx
2x[Rarm?a?-n8°+nm2ax8*|
TRag(62+m2a2x)

Sh=1+ (64)

The second term on the right-hand side of equations (63) and
(64) explains the convective contribution to heat and mass
transport, respectively.

4. RESULT AND DISCUSSION

The linear theory is explained by considering the usual normal
mode technique and the nonlinear theory is by the truncated
Fourier series method. Mathematical expressions for the
oscillatory, stationary and finite-amplitude Rayleigh numbers
for different values of parameters such as diffusivity ratio,
couple-stress parameter and solute Rayleigh number are
calculated and the results are plotted in figures. Figure 1
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displays the neutral stability curves for various values of the
couple-stress parameter and for fixed values of T = 0.5,Va =
1.0,and Rag = 150.0. The effect of Vadasz number on
neutral curves for the oscillatory mode is displayed in figure 2
for fixed values of Rag = 150.0,7 = 0.5 and € = 1.0. The
variation of the critical Rayleigh number for both stationary
and oscillatory modes with the solute Rayleigh number for
different values of the couple-stress parameter C and fixed
values of Va = 1.0 and T = 0.5 is depicted in figure 3.

Figure 4 indicates the variation of the critical Rayleigh number
for stationary and oscillatory modes with solute Rayleigh
number for different values of diffusivity ratio.

14 000 T T
T e
12 b= iy ' ]
wor il \e=100/ S /
o ' / ! )
| | v Il / I
| v ’ .’.l ’ ,
10000 f 1| 1| ; ; ; '
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] ] | i / J’r )
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Figure 1. Neutral stability curves for different values of the
couple stress parameter C.
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Figure 2. Neutral stability curves for different values of the
Vadasz number V.
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Figure 3. Variation of the critical Rayleigh number Ray ¢ with
the solute Rayleigh number Rag for different values of C.
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Figure 4. Variation of the critical Rayleigh number Ray ¢ with
the solute Rayleigh number Rag for different values of T.

5. CONCLUSION & FUTURE SCOPE

The onset of double-diffusive convection in a couple-stress
fluid-saturated with a horizontal porous layer is discussed by
using linear and weak nonlinear stability analyses. The
modified Darcy equation which includes the time derivative
term and the inertia term is used to model the momentum
equation. The expressions for stationary, oscillatory and finite-
amplitude Rayleigh number are found as a function of the
governing parameters. The effect of couple-stress parameter,
solute Rayleigh number, Vadasz number and diffusivity ratio
on stationary, oscillatory and finite-amplitude convection is
displayed graphically. The following conclusions are drawn:
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